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Abstract: A micro-expression (ME) is a kind of involuntary facial expressions, which commonly
occurs with subtle intensity. The accurately recognition ME, a. k. a. micro-expression recognition
(MER), has a number of potential applications, e.g., interrogation and clinical diagnosis. Therefore,
the subject has received a high level of attention among researchers in affective computing and
pattern recognition communities. In this paper, we proposed a straightforward and effective deep
learning method called uncertainty-aware magnification-robust networks (UAMRN) for MER, which
attempts to address two key issues in MER including the low intensity of ME and imbalance of ME
samples. Specifically, to better distinguish subtle ME movements, we reconstructed a new sequence
by magnifying the ME intensity. Furthermore, a sparse self-attention (SSA) block was implemented
which rectifies the standard self-attention with locality sensitive hashing (LSH), resulting in the
suppression of artefacts generated during magnification. On the other hand, for the class imbalance
problem, we guided the network optimization based on the confidence about the estimation, through
which the samples from rare classes were allotted greater uncertainty and thus trained more carefully.
We conducted the experiments on three public ME databases, i.e., CASME II, SAMM and SMIC-HS,
the results of which demonstrate improvement compared to recent state-of-the-art MER methods.

Keywords: micro-expression recognition; micro-expression magnification; locality sensitive hashing;
uncertainty; self-attention

1. Introduction

In recent years, micro-expressions (MEs) have gained increasing publicity in both
the academic and industrial community. A micro-expression is a stifled facial expression
with subtle and spontaneous muscle movements that appears very briefly (i.e., less than
200 ms). It usually appears when people attempt to conceal their true emotional states [1]
and is hard to disguise even for expert actors. Therefore, MEs can be regarded as reliable
clues with which to infer human emotions, making them especially helpful in high-stake
situations, e.g., in the judicial system, police interrogation [2] and clinical diagnosis. How-
ever, revealing spatial-temporal information is difficult because of the low intensity [3]
and short duration of MEs and it is rather challenging for humans to identify a ME with
the naked eye. In order to improve Micro-Expression Recognition (MER) performance,
psychological researchers have made contributions so as to train people to use training
tools. Despite these tools, the ability of people to recognize MEs achieves a less than 40%
accuracy. Moreover, manually recognizing MEs is time consuming, urging people to seek
more automatic and accurate methods for MER [2,4–6].

Facial expressions present in a dynamic manner, MEs, can be recorded in online
and offline videos. This characteristic facilitates the creation of ME databases, which
provide the ability to perform insightful studies on MER. The USF-HD [7], Polikovsky’s
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Database [3] and York Deception Detection Test (York-DDT) [8] are the earliest databases
collecting ME video clips. However, these databases are not widely used because of their
limitations. For instance, the MEs in Polikovsky’s Database and USF-HD are collected
by asking participants to pose intentionally instead of poses being elicited unconsciously.
In addition, the sample size is insufficient in the York-DDT, which limits the more intensive
implementation of an ME analysis. Considering the spontaneity of eliciting MEs, state-of-
the-art databases collect ME samples induced in the laboratory, e.g., SMIC [9], CASME [10],
CASME II [11], CAS(ME)2 [12] and SAMM [13], which is a great improvement compared
with the previous databases. Based on these datasets, many approaches have been devised
to promote the development of MER systems. In preliminary studies, researchers usually
use low-level features, e.g., Local Binary Pattern (LBP) [14], optical flow [15], gradient-based
features [3] and their variants to describe ME images. These features provide a form of
visual clues to be extracted from the details of the image, such as intensity which changes
either temporally or as a gradient. However, most of them lack the explicit semantic
interpretation of ME itself and are overdependent on hand gestures. Therefore, recent
studies focused on high-level features utilizing deep learning.

A high-level feature is the combination of multiple low-level features. It is semantically
interpretable and has a more discriminative ability to represent MEs. Most of the-state-
of-the-art high-level representations are extracted from CNN models. In some earlier
studies [16–19], researchers mainly focused on spatial information, some of which provide
clues based on ME frames and the others based on optical flow. Recent works attempted to
encode both spatial and temporal information for a more comprehensive representation
since facial movement variation is a dynamic process. Many deep-learning-based methods
specialize in capturing dependencies in long sequences, e.g., 3D Convolutional Neural Net-
works (3D CNNs) [20,21], and Long Short-Term Memory Networks (LSTMs) [22], which
are employed to capture the motion of MEs. Nevertheless, MEs are reflected in the local
area with a low intensity of muscle movements, resulting in the perception of motion varia-
tion being complex. To tackle this issue, a technique to magnify these subtle movements
can be helpful to improve the performance of MER. The most commonly used magnifi-
cation techniques, e.g., Eulerian Motion Magnification (EMM) [23], Global Lagrangian
Motion Magnification (GLMM) [24], and Learning-based Video Motion Magnification
(LVMM) [25], have shown good performance in magnifying subtle movements. Inspired
by this effect, many MER works introduced magnification techniques to magnifying ME
intensity, and their results proved the effectiveness of ME magnification [23,24,26,27].

Despite these achievements, the following problem that occurs during magnification
is rarely mentioned: the unified-magnification strategy, which is implemented by setting
the same amplification factor for all ME samples, is not adaptable, since the intensity
variation scope varies in different ME samples. For example, in some ME video clips,
the intensity variation is more acute, so a small amplification factor may be adequate to
magnify them. Conversely, in other clips, the variation is very subtle and requires larger
amplification factors. An improper magnification level may introduce artefacts and even
cause severe deformation, as shown in Figure 1. Therefore, a method to effectively capture
powerful motion representation while avoiding the deficiencies of magnification is required.
Moreover, existing methods are limited due to imbalanced ME databases. For the minority
classes, the model sees much fewer samples and thus tends to underfit these samples
during training. This problem can impair the interpretation of unfamiliar ME samples.

In this paper, we proposed a novel framework, namely an Uncertainty-Aware
Magnification-Robust Network (UAMRN), to address the aforementioned problems. Specif-
ically, in order to make the network perceive ME movements more easily, we used mag-
nification techniques to rebuild a sequence with a more discriminative representation
for motion. Afterwards, we imposed sparsity constraints via Locality Sensitive Hashing
(LSH) into a self-attention block, adaptively reserving highly-correlated ME features and
discarding the uncorrelated ones. The resultant sparsity of the self-attention feature retains
the global modeling ability of the standard self-attention feature while mitigating magnifi-
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cation artefacts. On the other hand, to manage the imbalanced dataset issue, we utilized
sample uncertainty information based on the Bayesian uncertainty measure to learn more
generalizable features for rare classes.

Figure 1. Two ME samples magnified with the same set of amplification factors. The first and second
row display “disgust” and “surprise”, respectively. A large magnification level can facilitate the
extraction of discriminative features for one sample, i.e., “disgust”, but can cause severe deformation
on the other, i.e., “surprise”.

This work is an extended version of our conference paper (part of this work is pre-
sented in ICPR2022). In addition, a more robust model with higher MER performance,
enhanced by using uncertainty estimation to guide the training, is provided. The exper-
iments were reimplemented to test the model, and the results are provided. The main
contributions are summarized as follows:

• A sequence more able to reflect ME movements was rebuilt via magnification tech-
niques.

• To preserve as many of the ME-related features as possible and suppress magnifica-
tion noise, we proposed a sparse self-attention (SSA) block by enforcing sparsity in
attention terms using Locality Sensitive Hashing (LSH).

• To improve the recognition accuracy of rare classes, we estimated the uncertainty for
each sample, where the samples from rare classes can be trained more carefully.

• Extensive experiments conducted on three widely used databases demonstrate that
our approach yields competitive results compared with state-of-the-art MER methods.

2. Related Works
2.1. Motion Magnification for Micro-Expressions

It was previously shown on a wide spectrum of MER tasks that magnifying ME in-
tensity before recognition can promote performance [23,28]. Generally, most MER works
using developed magnification techniques follow the method of first magnifying original
ME images and then sending them to the network for recognition. To ensure the classifier
better distinguishes between different ME classes, Li et al. [26] adopted Eulerian Motion
Magnification (EMM) to magnify the subtle motions in videos. Ngo et al. [24] then in-
troduced a new magnification technique, i.e., Global Lagrangian Motion Magnification
(GLMM), which was found to provide more discriminative magnification. However, these
earlier MER works used hand-crafted filters to magnify ME intensity, which required more
hyper-parameters settings and were prone to noise and blur. Therefore, as deep learning
methods emerge, recent works resorted to more robust magnification techniques, and their
results demonstrated better flexibility. Lei et al. [25] adopted a transfer learning strategy
to magnify MEs for better structural representation. Their later work used CNN-based
methods for ME magnification and yielded further improvements [29]. Although learning-
based magnification approaches are less condition limited, they have the same problem
as hand-crafted filters when used to magnify MEs, i.e., the deficiency of adaptability to
different subjects and artefacts introduced by improper amplification factors. Therefore,
in our work, we devised a new role for magnification, implemented by setting multiple
magnification levels for the same subject. Meanwhile, the artefacts of magnification can be
mitigated via our sparsity design in self-attention blocks.
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2.2. Uncertainty Estimation in Neural Networks

Uncertainty knowledge provides an estimation of the confidence of the Neural Net-
work’s (NN’s) prediction. Hitherto, significant studies have been conducted in the com-
puter vision domain to provide uncertainty estimates. In general, there are two forms
of uncertainty which are as follows: [30] (1) model uncertainty resulting from an under-
fit model (epistemic uncertainty) and (2) data uncertainty due to the noise inherent in
databases (aleatoric uncertainty), where model uncertainty can be decreased by adding
more data while data uncertainty is only related to the observation itself. In earlier works,
these uncertainties were evaluated using Bayesian deep methods [31], where the model
weights were considered as a distribution instead of as fixed values. However, Bayesian
inference comes with huge computational cost in deep models, so another simple technique,
i.e., Monte-Carlo Dropout sampling [32] by placing a Bernoulli distribution over weights,
is much more widely adopted. It has been shown that uncertainty to guide training could
facilitate the ability to recognize samples contaminated with noise, especially for datasets
of a small size [33–35]. Inspired by these works, we proposed an improvement of gener-
alization ability based on uncertainty estimation, where the classes not fully learned by
the model due to the lack of data, compared with those classes with more samples, are
weighted higher during training.

3. Proposed Method

The framework of our proposed model is shown in Figure 2. First, we rebuilt a
new sequence by enhancing ME intensity, where each image corresponded to a specific
amplification factor (AF). The rebuilt sequence is much easier to recognize because it holds
more distinct intensity variation compared with the original ME video clip. Afterwards,
to mitigate improper magnification levels, we adaptively zeroed out some useless clues by
imposing sparsity in the self-attention (SSA) block. Moreover, to handle the imbalanced
ME dataset problem, we estimated the uncertainty score for each sample and used the score
to guide the network to provide better training for those samples from rare classes.

Figure 2. Framework of the proposed method. (a) denotes the intensity variation before and after
sequence reconstruction. (b) denotes the attention matrix before and after enforcing sparsity. (c) is
the interpretation of some signs in the above framework.

3.1. ME Sequence Reconstruction

In the original ME video clip, the intensity variation was not clear enough to be
captured due to the subtle movement of the ME. Therefore, we constructed a new sequence
which presents a larger intensity scope, implemented by simulating the intensity variation
with magnification techniques, as demonstrated in (a) of Figure 2. The new sequence
discards the temporal meaning of the original where the intensity varies with time, but with
amplification factors.
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Using hand-crafted filters requires more human intervention, so we introduced a
new magnification technique based on a transfer learning strategy, i.e., a deep network
pre-trained on a large-scale database devised by Oh et al. [36], to magnify ME intensity.
This strategy allows the network to function in an end-to-end manner and produced
clearer magnified images. According to the definition of motion magnification provided
by Wadhwa et al. [37], for a frame I(P, t) in a video at position P = (x, y), denoted
as I(P, t) = f (P + σ(P, t)), where σ(P, t) represents the motion field at P and time t,
the magnified image is as follows:

Ĩ = f (P + (1 + α)σ(P, t)), (1)

where α is amplification factor. Here, in an ME video clip, we used the onset Ionset and the
apex Iapex frame to produce magnified images, denoted as

Imag = f (Ionset + (1 + α)|Iapex − Ionset|), (2)

where | · | represents the pixel-wise subtraction and Imag represents the magnified image.
These magnified images are then arranged corresponding to their amplification factors
(AFs) into a new sequence. Compared with the original video, the new one better reflects
intensity variation since it is built on the magnified intensity discrepancy between frames.

3.2. Magnification-Robustness from Sparse Self-Attention

The new sequence was built based on the same set of AFs, which led to a prominent
problem, i.e., uncontrollable artefacts resulted from improper magnification, especially
from overlarge AFs. Therefore, some feature vectors from the sequence may be useless as
they originate from magnified images with excessive deformation. To alleviate this issue,
we removed these features with three sparse self-attention (SSA) blocks, where the sparsity
was enforced in the standard self-attention feature.

3.2.1. Self-Attention

According to [38], the standard self-attention block captures the dependencies in a
sequence by enumerating all locations, mainly functioning using three learnable matri-
ces, i.e., Q ∈ RL×dq to match others, K ∈ RL×dk to be matched and V ∈ RL×dv for the
information to be extracted, which is formulated as

Attention(Q, K, V) = Softmax(
QKT
√

dk
)V , (3)

where dq = dk and dq, dk, dv are the dimensions of query (q), key (k) and value (v),
respectively. L represents the sequence length. In Equation (3), each qi is a dot product
with each kj at every location of the sequence, where i, j ∈ {1, ..., L}. Here, we expect
the features from the magnified images with excessive deformation to be abandoned,
and that the attention is operated only for the locations with highly-correlated features.
Therefore, for some queries in Q, if they originate from the magnified frames with over-
large deformation, there is likely no key in K that shares a high correlation with them.

These cases can be set to zero in the term Softmax(QKT√
dk
).

3.2.2. Magnification-Robust Sparsity

Since we wanted to discard the less relevant elements, an instinctive way is to sort
them according to their correlation and keep those larger features. However, the process of
selecting the threshold cannot be adapted to recognize useless features, because each subject
may correspond to different thresholds. Therefore, we devised the Sparse Self-Attention
(SSA) block to make this process adaptive, as shown in (b) of Figure 2. More specifically,
to ensure that the more relevant elements were more likely to be reserved in the attention
matrix, we embedded Locality Sensitive Hashing (LSH) into the standard self-attention.
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The way that LSH operates is to take the space and cut it into several separate regions with
hyper-planes. Each region represents a hash bucket. A vector is projected to the space by
providing a dot product with the hyper-planes. If two vectors have a higher correlation,
they are likely to fall into the same hash bucket. The resultant attention functions by only
attending to the vectors in the same hash bucket. In the reconstructed sequence, the feature
vectors containing the majority of the magnification artefacts fall into different hash buckets,
as demonstrated in Figure 3. By detracting the attention from improperly magnified images
and maintaining attention to highly-correlated ME features, our model can filter more
discriminative clues to recognize MEs.

Figure 3. An example of locality sensitive hashing (LSH). Three hyper-planes h1, h2, h3 cut the space
into eight buckets where nearby feature vectors are more likely to be projected into the same bucket,
e.g., (q1, k2), (q2, k3, k4). Vectors from magnification noise are hashed into other buckets discretely,
e.g., q5, k6.

We provide an example to clarify this. Suppose there are three hyper-planes in the
space, denoted as h1, h2 and h3 ∈ Rd, which cut the space into 23 = 8 regions. Each
region represents a hash bucket for holding vectors. For a feature vector x ∈ Rd, if the
product xTh > 0, it is projected on one side of h with the tag “0”; otherwise it is labeled
as “1”. For instance, if we compute xTh1 < 0, xTh2 < 0 and xTh3 > 0, the vector x
will fall into the bucket tagged as h(x) = “001”. Then, each bucket corresponds to a tag
consisting of three binary digits. For brevity, the buckets are collected into a set denoted as
H = {“001”, “000”, “010”, “011”, “101”, “100”, “111”, “110”}. To form the attention matrix
QKT, we first hash all the queries and keys into the space and then only keep those in the
same bucket. The resultant attention is implemented by attending to the queries and keys
in the following index set:

Ωi,j ={(i, j)|h(qi) = h(kj)},
s.t. 0 < i, j < L.

(4)

Considering that the hyper-planes are randomly generated, some highly-correlated
elements may be hashed into different buckets. To mitigate this issue, we first generated
multiple sets of hyper-planes {H(1), H(2), ..., H(nt)}, and then each set was hashed once by
the queries and keys. The result is obtained by gathering the union of these sets which is
formulated as follows:

Ωi,j =
nt⋃

r=1

Ω(r)
i,j , (5)

where Ω(r)
i,j = {(i, j)|h(r)(qi) = h(r)(kj)} and nt is the number of times we regenerate

hyper-planes. Here, the original attention matrix in Formula (3) is rewritten as

Attention(Q, K, V) = ∑
(i,j)∈Ωi,j

Softmax(
qikT

j√
dk

)V . (6)
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Compared with Equation (3), the sparse one can retain the ability to globally attend to the
most informative locations while avoiding the interference from improper magnification
levels, achieved in an adaptive way. We provide the pseudocode in Algorithm 1.

Algorithm 1: Sparse Self-Attention with Locality Sensitive Hashing.
Input: L queries (q) and L keys (k), number of hash table nt, number of

hyper-planes np

Output: Sparse attention matrix ∑(i,j)∈Ωi,j
Softmax(

qikT
j√

dk
)V

1 for all table ∈ {1, ..., nt} do
2 Randomly generate np vectors as hyper-planes, h1, h2, . . . , hnp ;
3 Mark each bucket partitioned by these hyper-planes, one side of the plane is

labeled ‘0’ and the other side is labeled ‘1’;
4 Hash all the queries and keys to different buckets by computing their product

with hyper-planes;
5 Collate the key-query pairs falling into the same bucket.
6 end
7 for all buckets {hp}2np

p=1 do
8 Obtain the union of key-query pairs from all tables;
9 end

10 Only operate dot product for those queries and keys in the same bucket.

3.3. Uncertainty-Aware Training for the Imbalanced Dataset Problem

The imbalanced dataset problem, prevailing in ME databases, tends to degrade the
generalization of rare classes of the dataset. Moreover, during the collection of ME samples,
the expression presented by the participant may deviate from the initial intention that the
stimulus materials aim to elicit. For instance, the stimulus material is a clip of video with
disgusting contents intending to arouse people’s feeling of “disgust”, but the expression
they demonstrate may be “fear”. The sample is still labeled as “disgust”. This mistake
is inevitable in existing ME databases. Therefore, to handle label noise on imbalanced
datasets, we estimated the epistemic and aleatoric uncertainty for each sample, and used
them as the weights of the sample’s contribution to the loss. As the uncertainty derives from
the uncertainty of the model weights, in our network, we added dropout after some layers
in the SSA blocks. The output includes both predictive mean and its variance as follows:

ȳ, σ̂2t = f W (x),

p = Softmax(ȳ),

(7)

where f is our network parametrized by W and p is the class probability with pc as the
element denoting that of class c. For a sample x, its prediction is subject to Gaussian
distribution ŷ ∼ N (ȳ, σ̂2). The uncertainty for this sample is computed as the expectation
of ŷ, approximated using Monte Carlo integration:

γ ≈ 1
M

M

∑
m=1

ŷ2
m − (

1
M

M

∑
m=1

ŷm)
2 +

1
M

M

∑
m=1

σ̂2
m, (8)

where {ŷm, σ̂2
m}M

m=1 is the set of M sampled outputs. Here, we used the uncertainty as the
weight of the sample contributing to the loss, so the objective becomes

L = − 1
N ∑

n
γn

C

∑
c=1

yn,c log pn,c (9)
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where C is the number of classes, n is the index of sample, and N is the number of samples.
During the training, as the samples with larger uncertainty mostly resulted from noisy
labels or rare classes and contribute more to the loss, the model can learn to pay more
attention to these samples in order to attenuate the loss. Therefore, these samples can be
trained more carefully, leading to a more relaxed generalization boundary on rare classes.

4. Experiments
4.1. Databases

We conducted experiments on three public ME datasets, i.e., CASME II [11], SAMM [13],
and SMIC-HS [9]. More details concerning these datasets are provided below.

CASME II contains 246 ME video clips elicited from 26 participants, recorded by a
high-speed camera at 200 fps. The following five ME categories were selected for experi-
mentation: happiness (32), disgust (63), repression (27), surprise (25) and other (99), where
the number in the brackets denotes the number of samples in this class.

SAMM includes 159 ME samples from 32 participants of 13 ethnicities. The recording
rate of the camera is 200 fps. We also selected five categories from this database, i.e., anger
(57), happiness (26), contempt (12), surprise (15) and other (26).

SMIC-HS is the HS version of SMIC where the videos are recorded by a 100 fps
high-speed camera. It collects 164 spontaneous MEs which are divided into the following
classes: positive (51), negative (70), and surprise (43). We use all the samples in this dataset.

When we rebuild the new sequence using magnification, we need to know the indices
of the apex and onset frame. The CASME II and SAMM provide the annotation of key
frames while the SMIC-HS does not. Considering that our model does not require the
accurate location of key frames as we can produce high intensity variation by applying a
large amplification factor, we selected the middle frame as the apex.

4.2. Protocols

To evaluate the efficacy of the proposed method, we used the leave-one-subject-out
(LOSO) cross-validation protocol, implemented by treating all samples from one subject as
the test set while the remaining samples comprised the training set. The final recognition
result is obtained by averaging all the subjects. The metrics of evaluation are the accuracy
and F1-score, given as below:

acc =
T
N

,

F1-score =
1
c

C

∑
c=1

2× Pc × Rc

Pc + Rc
,

(10)

where the accuracy assesses the overall recognition performance, with T denoting the
total number of correct predictions. F1-score evaluates the ability when managing the
unbalanced database problem, where Pc and Rc are the precision and recall of the c-th
micro-expression, respectively.

4.3. Implementation Details

In each ME video clip, we first used [39] to compute 68 facial landmarks of the onset,
and then cropped the face area by these coordinates. The apex was cropped using the
coordinates of the onset, aiming to ensure the two frames had no displacements caused by
irrelevant factors. We resized all the images to 224× 224 as the input.

Considering that a small ME dataset may result in overfitting, we used the first few
layers of the pre-trained Resnet-18 [40], pre-trained on the FER+ [41] dataset, to extract
shallow features of the magnified frames. These features were set as the input of the
proposed framework. To encode position clues before SSA blocks, we adopted sine and
cosine functions of different frequencies as follows: PE(pos,2d) = sin(pos/100002d/dmodel ),
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PE(pos,2d+1) = cos(pos/100002d/dmodel ), where pos is the position in the sequence and d is
the specific dimension of dmodel .

We trained the UAMRN at 40 epochs. For learning parameters, the decay rates for the
1st and 2nd moment estimates were 0.9 and 0.999, respectively, in the ADAM optimizer.
The learning rate was set to 2× 10−4 and reduced by 0.1 after every 10 epoch. Other
detailed hyper-parameters are listed in Table 1.

Table 1. Hyper-parameters of the UAMRN.

Hyper-Parameter Description Value

np Number of hyper-planes 3
L Length of the rebuilt sequence 32
nt Number of hash tables 4
nh Number of attention heads 2
AFR Amplification factor range [2 : 1 : 13]
dmodel Dimension of the model 1024

4.4. Experimental Results

In Tables 2–4, we compare the performance of the UAMRN against other relelated
MER works. The comparison is provided from two perspectives, i.e., a comparison against
the methods using hand-crafted or learning based ME features, and against those methods
with the aid of magnification techniques.

Table 2. Experimental Results (Accuracy/F1-score) on the CASME II with 5 classes. The bold font
indicates best performance.

Methods Accuracy (%) F1-Score (%)

LBP-TOP + AdaBoost (2014) [42] 43.78 33.37
STRBP (2017) [43] 64.37 N/A
HIGO + Mag (2018) [26] 67.21 N/A
ME-Booster (2019) [23] 70.85 N/A
TSCNN (2019) [44] 80.97 80.70
Graph-tcn (2020) [25] 73.98 72.46
AU-GCN (2021) [29] 74.27 70.47

AUMRN 80.57 76.02

Table 3. Experimental Results (Accuracy/F1-score) on the SAMM with 5 classes. The bold font
indicates best performance.

Methods Accuracy (%) F1-Score (%)

DSSN (2019) [45] 57.35 46.44
TSCNN (2019) [44] 71.76 69.42
Graph-tcn (2020) [25] 75.00 69.85
MTMNet (2020) [46] 74.10 73.60
AU-GCN (2021) [29] 74.26 70.45
GEME (2021) [47] 65.44 54.67
MERSiamC3D (2021) [20] 64.03 60.00

AUMRN 79.41 77.32
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Table 4. Experimental Results (Accuracy/F1-score) on the SMIC-HS with 3 classes. The bold font
indicates best performance.

Methods Accuracy (%) F1-Score (%)

LBP-SIP (2014) [48] 62.80 N/A
STRBP (2017) [43] 60.98 N/A
Dual-Inception Network (2019) [49] 66.00 67.00
3D-CNNs (2019) [21] 66.30 N/A
TSCNN (2019) [44] 72.74 72.36
MTMNet (2020) [46] 76.80 74.40
GEME (2021) [47] 64.63 61.58

AUMRN 78.05 78.14

4.4.1. Comparison with Methods Using Hand-Crafted Features and Deep Models

It can be observed that when compared with other traditional and deep features,
our method obtained the best overall performance. To be specific, UAMRN exceeded
early hand-crafted works, e.g., LBP-SIP [48], LBP-TOP + AdaBoost [42], and STRBP [43],
by a large margin, which proves that deep models have more advantages in extracting
ME features. Moreover, compared with most state-of-the-art learning based methods,
e.g., TSCNN [44], 3D-CNNs [21], MERSiamC3D [20], UAMRN also achieves better results.
TSCNN surpasses our method in terms of F1-score by 4.68% and of accuracy by 0.4%,
respectively, on the CASME II. According to the ablation experiments reported, in its
model, the dynamic-temporal and static-spatial modules are two major parts contributing
to recognizing MEs. Our method also focused on temporal and spatial clues, where the
temporal clue was enhanced by magnifying intensity. Therefore, the performance of our
model on the other two databases is much higher.

4.4.2. Comparison with Methods Magnifying ME Intensity

The proposed UAMRN obtained increases of 9.72% and 13.36% in the accuracy on the
CASME II, compared with ME-Booster [23] and HIGO + Mag [26] which adopt Eulerian
Motion Magnification (EMM) for magnification. Compared with the approaches using the
same magnification techniques as ours, i.e., Graph-tcn [25], and AU-GCN [29], UAMRN
also performs better. We speculate that its superiority lies in the innovative exertion of
magnification, implemented by applying multiple AFs for the same subject instead of
applying just one AF, which adds adaptability to the framework. In addition, it can be
noticed that UAMRN exceeds most MER methods substantially in terms of the F1-score,
indicating that our method has a better ability to manage the imbalanced dataset problem.

4.5. The Effectiveness of Locality Sensitive Hashing

In order to validate that the magnified images with excessive artefacts can be dis-
carded through SSA blocks, we retrieved the feature vectors q and k and plotted the result

∑(i,j)∈Ωi,j
Softmax(

qikT
j√

dk
)V . Afterwards, we verified them with the frames from the rebuilt

sequence. Large indexes of q and k denote features from magnified frames with large AFs,
as shown in Figure 4.

It can be observed that generally, non-zero elements are centred near the diagonal of
the matrix, suggesting that adjacent frames tend to have a higher correlation than distant
frames. Additionally, the majority of the lower right corner of the matrix, where the indexes
of q and k are larger (corresponding to images with large AF), is filled with zero values,
which validates the efficacy of LSH for removing distorted images. It can also be noted that
some vectors sharing adjacent indexes were placed into different buckets, e.g., k20, q9, k17.
We speculate the reason is that some vectors, even if they are close to one another, may fall
into different buckets due to the randomness of the way that hyper-planes are partitioned.
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The impact of this problem can be counteracted by employing attention with multi-heads
to extract multiple levels of information.

Figure 4. An example (sub02/EP03_02 f on the CASME II) of the sparse attention matrix

∑(i,j)∈Ωi,j
Softmax(

qikT
j√

dk
) where darker color denotes larger values. The rows represent the index

of q and the columns represent the index of k.

5. Ablation Study
5.1. Uncertainty-Aware versus Deterministic

To evaluate the efficacy of uncertainty estimates, we also conducted experiments for
comparison, which did not require forward propagation multiple times to compute uncer-
tainty. The predictive mean ȳ of the output is used as the prediction, so the optimization
objective becomes the standard cross-entropy loss. The results are shown in Table 5.

Table 5. Effect of Uncertainty Estimation. The bold font indicates best performance.

Acc (%) F1-Score (%)

CASME II SAMM SMIC-HS CASME II SAMM SMIC-HS

Deterministic 78.95 76.47 77.44 74.17 74.51 76.75
Uncertainty-Aware 80.57 79.41 78.05 76.02 77.32 78.14

It can be found in the table above that using uncertainty as the estimation to guide
the training could improve the overall performance, especially in terms of the F1-score.
During training, the formulation of epistemic and aleatoric uncertainty introduced a new
loss function, whereby the sample that the network is less confident with in terms of
prediction contributes more to the loss. With the learning of loss attenuation, the effect
from minority classes and corrupted labels are also attenuated, leading to a more robust
network for the data.

5.2. Full Attention versus Sparse Attention

In order to validate the performance of sparse self-attention in mitigating useless
magnification clues, we conducted experiments by replacing the SSA blocks with standard
full-attention. In addition to comparing the results in terms of accuracy and F1-score, we
also conducted an analysis of their computational efficiency. In the SSA, the number of
hash buckets (np) was exponential to that of the hyper-planes, as follows: w = 2np . Hence,
a hash bucket has an averaged size L

np
. For briefness, we only computed hashing once

in the SSA, so the maximum time complexity is w( L
2np

)2. As for full-attention, the time

complexity is quadratic to the length of the sequence, denoted as bnhL2. More results are
shown in Table 6.
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Table 6. Effect of Sparsity Constraints. The bold font indicates best performance.

Time Complexity O (N)
Acc (%)

CASME II SAMM SMIC-HS

Full-Attention bnhL2 78.54 77.21 74.39
SSA bnhntw( L

2w )2 80.57 79.41 78.05

As shown in Table 6, the SSA performed better on the three databases than the standard
one, which proved that imposing sparsity constraints could help the model retain the ability
to capture the dependencies in sequences, while erasing defective magnification clues.
The less relevant vectors can be allocated lower scores in the attention matrix without being
set as zero. This case will not impact the result much when the sequence is clear. However,
once the sequence is dominated with noise, the performance will decline critically since
the attention matrix keeps all the products from the vectors. From the model’s perspective,
a sequence filled with useless clues is identical to useful clues, because it implements
attention without distinguishing locations. However, in the SSA, as the noise dominates
the sequence, the attention matrix will be more sparse. Hence, the model can adaptively
attend to those highly-correlated locations, indicating that knowing where to attend is more
important than attending all.

6. Conclusions

In this paper, a novel uncertainty-aware magnification-robust network (UAMRN) was
proposed to resolve the low intensity and imbalanced dataset problem in MER. To make
ME movements more distinguishable, a surrogate sequence was built via a magnifica-
tion technique. Subsequently, to mitigate the artefacts in the new sequence produced by
magnification, and to adaptively implement useful magnification levels for different ME
samples, we devised a sparse self-attention (SSA) block by incorporating sparsity into the
standard self-attention feature using locality sensitive hashing. SSA adaptively attends to
those highly-correlated locations and abandons the vectors corrupted with noise, leading
to a more robust operation. Moreover, to manage the imbalanced dataset problem, we
computed the uncertainty scores corresponding to each sample, where the scores were used
as the weight to guide the training of the model. In this way, the samples from minority
classes can be trained more carefully; hence, the features extracted from these classes were
more generalizable. Extensive experiments on the three public ME databases helped to
validate the efficacy of the proposed method.
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