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Abstract—Existing works for spontaneous Micro-Expression
Recognition (MER) tend to encode Micro-Expression (ME)
movements to get more discriminative features. However, MEs’
low intensity makes the capture for motion extremely difficult,
and the widely adopted unified-magnification strategy is prone to
noise and lacks flexibility. To this end, this paper provides a new
insight to encode ME motion and tackle magnification noise.
Specifically, we reconstruct a new sequence via magnification
techniques to make subtle ME movements more distinguishable.
Afterward, Sparse Self-Attention (SSA) rectifies self-attention
with Locality Sensitive Hashing (LSH), cutting the space into
several hush buckets of related features. Only keys in the
same bucket are operated in the attention term for every
query feature. The resulting sparsity in the attention matrix
prevents the network from attending features stemming from
less-informative magnification degrees which could be regarded
as noise, while retains the sequence modelling capability of
standard self-attention. Extensive experiments on three public
MER databases demonstrate our superiority against the state-
of-the-art methods.

I. INTRODUCTION

Micro-expression (ME) is a kind of facial expression which
appears when people attempt to conceal their actual emotional
states [1]. It is helpful to understand real human emotions
and therefore has potential application prospects in many
fields, e.g., lie detection, human-computer interaction, and
national security [2]. However, ME is characterized with
shorter temporal duration—nearly 1/25 to 1/3 seconds and
with localized subtle variation [3], which makes correctly
recognizing MEs more difficult. Targeting at this problem,
more and more approaches have been proposed to seek a
more precise representation for micro-expression recognition
(MER).

Since facial movement is a dynamic variation, encoding
motion features is indispensible to acquire a more compre-
hensive representation. In recent works, many deep learning-
based methods specialized in capturing dependencies in long
sequences, e.g., 3D Convolutional Neural Networks (3D CNN)
[4], [5], Long Short-Term Memory Network (LSTM) [6] are
employed to capture the motion of MEs. However, MEs are
reflected in the local area with low intensity of muscle move-
ments, resulting in the perception of motion variation being
complex. To tackle this issue, a technique to magnify these
subtle movements can be helpful to improve the performance
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Fig. 1: A set of consistent magnification levels on two ME
samples. The first, second row displays “disgust” and “sur-
prise”, respectively. A large magnification level is helpful for
extracting discriminative features for “disgust”, but can cause
noise on “surprise”.

of MER. The most commonly used magnification techniques,
e.g., Eulerian Motion Magnification (EMM) [7], Global La-
grangian Motion Magnification (GLMM) [8], Learning-based
Video Motion Magnification (LVMM) [9], have done a good
job in magnifying subtle movements. Inspired by this, some
works adopt magnification techniques to magnify ME motion,
whose results confirm the effectiveness of ME magnification
in promoting MER performance [10], [7], [8], [11].

Despite the progress, a potential problem in the magnifi-
cation process is commonly neglected: physical techniques
for magnifying MEs bring much noise and blurs when the
magnification level is overlarge. As the magnification level
grows, muscle movements become more intense but may
also appear deformation in the face. More specifically, for
some subjects, a larger magnification level is required to
extract discriminative motion features. In contrast, for others,
the same magnification level may induce severe deformation,
resulting in the noise dominating the magnified image, as
shown in Fig. 1. The deformation noise generated by the
unified-magnification strategy is useless in the training process
and may exert negative influence on subsequent tasks. Thus,
it is imperative to devise a method that can effectively capture
powerful motion representation while being robust to noise
brought by magnification.

In this paper, to address the issues above, we provide a
new insight towards effectively encoding motorial features in
ME video clips, namely Magnification-Robust Network with
Sparse Self-Attention (MRN). To make the network perceive
ME movements more easily, we use magnification techniques
to rebuild a sequence which has more discriminative represen-



tation for motion. To suppress the noise during magnification,
we impose sparsity constraints via Locality Sensitive Hashing
(LSH) into a self-attention block, which can adaptively reserve
highly-correlated ME features and discard the uncorrelated
ones. As a result, our network retains the global modeling
ability of the standard self-attention while tackling defective
magnification problems through sparse representation. Fur-
thermore, our network is efficient in time by zeroing out
irrelevant information. The main contributions are summarized
as follows:

• A sequence more able to reflect ME movements is rebuilt
via magnification techniques.

• To preserve as much as ME-related features and suppress
magnification noise, we propose a sparse self-attention
(SSA) block through enforcing sparsity in attention terms
using Locality Sensitive Hashing (LSH).

• Extensive experiments conducted on three widely used
databases manifest that our approach yields competitive
results compared with state-of-the-art MER methods.

II. PROPOSED METHOD

A. The Framework

The framework of our proposed model is shown in Fig.2. To
begin with, we magnify MEs using the onset and apex frame
in a ME video with a set of consecutive amplification factors
(AFs). As the AF grows, muscle movements are more appar-
ent, resulting in the capture of movements more obtainable
than the original sequence. Then, to adaptively reserve useful
magnification levels, we zero out some irrelevant information
in the sparse self-attention (SSA) block. At the end of the
framework, we jointly concatenate the motion representation
and initial spatial information for final classification.

B. ME Sequence Reconstruction

Considering that ME intensity variation is very subtle to
perceive, instead of using the original video clip, we simulate
this intensity variation through magnification techniques, as
demonstrated in the left box in Fig.2. Different from the
original one in which intensity grows with time in a non-linear
manner, our reconstructed sequence discards the temporal
meaning but focus on enhancing motorial representation by
exploring their underlying linear forms.

Considering hand-crafted magnification techniques require
more manual intervention, in our practice, to enable the
network to operate in an end-to-end manner, we adopt transfer
learning strategy to initialize the network. Our magnification
technique is based on a deep network pre-trained on a large-
scale database devised by Oh et al. [12]. Following Wadhwa
et al.’s definition of motion magnification [13], for a frame
in a ME video clip at position P = (x, y), denoted as
I(P, t) = f(P +σ(P, t)), where σ(P, t) represents the motion
field at P and time t, the magnified image is

Ĩ = f(P + (1 + α)σ(P, t)), (1)

where α is amplification factor. In our case, we use the onset
frame Ionset and apex frame Iapex with certain motion offset

in the same ME video to generate magnified images Imag ,
denoted as

Imag = f(Ionset + (1 + α)|Iapex − Ionset|), (2)

where | · | denotes the pixel-wise substraction. The magnified
images are then arranged according to their corresponding AFs
to construct a new sequence. Compared with the original, the
new sequence has more powerful ability to reflect ME motion
since it is built on the magnified difference between the apex
and onset.

C. Magnification-Robust Network with Sparse Self-attention

To effectively capture ME dynamic motion in the recon-
structed sequence, we employ self-attention for its capability
in parallelly modelling long sequences. However, a prominent
drawback in magnification process lies in the uncontrollable
noise caused by overlarge magnification levels, which means
that some feature vectors from the rebulit sequence is use-
less. To alleviate this problem, we zero out some irrelevant
magnification information by imposing sparsity constraint.

1) Self-Attention: According to [14], a self-attention block
integrates sequence information by enumerating all positions,
which is mainly functioned by three learnable feature matrices,
i.e., Q ∈ RL×dq to match others, K ∈ RL×dk to be
matched and V ∈ RL×dv for the information to be extracted,
formulated as

Attention(Q,K,V ) = softmax(
QKT

√
dk

)V , (3)

where dq = dk and dq, dk, dv are the dimension of query (q),
key (k) and value (v), respectively. L represents the sequence
length. Equ. 3. implements by operating each qi to multiply
the kj one by one at every position of the sequence, where
i, j ∈ {1, ..., L}. In our practice, we expect the features from
excessive deformation images are not operated product but set
as zero in the attention matrix, so we only operate attention
on the locations with highly-correlated features. Therefore,
for some queries in Q from magnified frame with over-large
deformation, it’s very likely that no keys in K share high
correlation with them. These cases can actually be set to zero
in the term softmax(QKT

√
dk

).
2) Magnification-Robust Sparsity: The process is shown in

the right dotted box of Fig.2. During the training, we want
the attention matrix to keep the most relevant elements, a
natural method is to sort the values and keep those larger.
However, manually selecting thresholds is contrary to our
requirement for “adaptive”. We propose to adopt Locality
Sensitive Hashing (LSH) to ensure the more relevant elements
have higher probability to be operated attention. The way that
LSH operates is to take the space and cut it into several
separate regions with hyper-planes. Each region corresponds
to a hash bucket. Hash function projects a vector to the
space and if two vectors have higher correlation, they are
likely to fall into the same hash bucket. In our case, feature
vectors containing majority of noise will fall into different hash
buckets, as demonstrated in Fig. 3. By refraining the attention



Fig. 2: Framework of our proposed method. First, we pick the onset and apex frame in a ME video and magnify the ME
with different amplification factors to construct a new sequence. After that, we use Resnet-18 to extract features from the new
sequence. Then, three Sparse Self-Attention (SSA) blocks are utilized to encode motion while suppress the noise generated by
magnification. Feature vectors with different attention scores are concatenated with the motion features outputted from SSA
at last. A fully-connected layer and the softmax layer is followed to calculate probabilities.

between noise and allowing that between highly-correlated ME
features, our model filters the useful information for better ME
representation.

Formally, suppose there are three hyper-planes randomly
generated in the space, denoted as h1, h2 and h3 ∈ Rd, they
cut the space into 23 = 8 regions. Each region is taken as a
bucket for holding vectors. For a feature vector x ∈ Rd, if
the product xTh > 0, it is projected into one side of h with
tag “0”, otherwise “1”. For instance, if we compute xTh1 <
0,xTh2 < 0,xTh3 > 0, the vector x falls in the bucket
tagged h(x) = “001”. All the buckets compose the set H =
{“001”, “000”, “010”, “011”, “101”, “100”, “111”, “110”}.
To form the attention matrix QKT, we first hash all the
queries and keys into the space and then manage to keep
those in the same bucket. The result attention is operated
merely by queries and keys in the index set:

Ωi,j ={(i, j)|h(qi) = h(kj)},
s.t. 0 < i, j < L.

(4)

Considering that the hyper-planes are randomly generated in
hashing vectors, there might be the case that highly-correlated
elements are hashed into different buckets. To tackle this, we
propose to hash those elements multi times with different sets
of hyper-planes {H(1), H(2), ...,H(nt)} and get the union of
results, formulated as

Ωi,j =

nt⋃
r=1

Ω
(r)
i,j , (5)

where Ω
(r)
i,j = {(i, j)|h(r)(qi) = h(r)(kj)} and nt is the

number of times we generate hyper-planes. Therefore, original
attention matrix shown in formula (3) can be rewritten as

Attention(Q,K,V ) =
∑

(i,j)∈Ωi,j

softmax(
qik

T
j√

dk
)V . (6)

Fig. 3: An example of locality sensitive hashing (LSH). Three
hyper-planes h1,h2,h3 cut the space into eight buckets where
nearby feature vectors are more likely to be projected into
the same bucket, e.g., (q1,k2), (q2,k3,k4). Vectors from
magnification noise are hashed into other buckets discretely,
e.g., q5,k6.

Compared with Equ. 3, the sparse one retains useful magni-
fication information while avoids the interference of useless
noise. The pseudocode is shown in Algorithm 1.

D. Feature Fusion

Inspired by the effectiveness of residual connection [15], we
concatenate the feature vectors of magnified MEs and motion
features encoded by SSA blocks. To suppress the noise in
the former branch, we assign different attention scores on the
feature vectors. Specifically, for feature vectors corresponding
to magnified frames in the reconstructed sequence, denoted by
[FT

1 ,FT
2 , ...,FT

L ], we assign different scores by an attention
unit composed of a linear fully-connected (FC) layer and
a sigmoid activation function. Attention scores among those



Algorithm 1: Sparse Self-Attention with Locality Sen-
sitive Hashing
Input: L queries (q) and L keys (k), number of hash

table nt, number of hyper-planes np

Output: Sparse attention matrix∑
(i,j)∈Ωi,j

softmax(
qik

T
j√

dk
)V

1 for all table ∈ {1, ..., nt} do
2 Randomly generate np vectors as hyper-planes,

h1,h2, . . . ,hnp
;

3 Mark each bucket partitioned by these
hyper-planes, one side of the plane is labeled ‘0’
and the other side is labeled ‘1’;

4 Hash all the queries and keys to different buckets
by computing their product with hyper-planes;

5 Collate the key-query pairs falling into the same
bucket.

6 end
7 for all buckets {hp}2

np

p=1 do
8 Get the union of key-query pairs from all tables;
9 end

10 Only operate dot product for those queries and keys in
the same bucket;

feature vectors from the same sequence can be calculated as:

βi = σ(FT
i q0), (7)

where q0 is the parameter of FC layer, and σ(·) denotes
sigmoid function. The new weighted feature representation of
a single magnified frame can be formulated as:

F attn
i = βiF

T
i . (8)

In this way, magnified frames with excessive deformation
could be adaptively assigned smaller weights during the train-
ing. After concatenation, a FC layer with Softmax function is
employed to calculate the classification probabilities.

III. EXPERIMENTS

A. Databases and Protocols

1) Databases: We use three representative databases to
evaluate the performance of our method, i.e., CASME II,
SAMM, and the subset HS of SMIC [16], [17], [18]. CASME
II contains 255 video clips from 26 participants. We select five
emotion types: happiness (32), disgust (63), repression (27),
surprise (25) and other (99). SAMM contains contains 159 ME
samples from 32 participants. We also select five categories
from this database, which are anger (57), happiness (26),
contempt (12), surprise (15) and other (26). SMIC-HS contains
164 spontaneous micro-expressions with samples divided into
3 classes: positive (51), negative (70), and surprise (43).We
use all the samples for experimentation.

As we only need onset and apex frame in the sequence
reconstruction procedure, on the CASME II and SAMM, we
directly use the annotation provided. Although the annotation
for the apex on the SMIC-HS isn’t available, our model doesn’t

rely on accurately locating the apex since we can obtain
distinct magnification result only based on subtle movements,
so we locate the middle frame as the apex.

2) Protocols: We adopt the leave-one-subject-out (LOSO)
protocol to evaluate the performance of our approach, which
is proved reliable and widely used in MER. The metric for
calculating the accuracy rate is acc = T

N where T is the total
number of correct predictions and N is the total number of
samples for test. To assess the ability towards unbalanced ME
databases problem, we use the F1-score calculated as F1 −
score = 1

c

∑C
c=1

2×Pc×Rc

Pc+Rc
, where Pc and Rc are the precision

and recall of the c-th micro-expression, respectively, and C is
the number of ME classes.

B. Implementation details

1) Preprocessing: In each ME sequence, we calculate 68
landmarks around the face on the onset frame according to [19]
and crop the facial area by these coordinates. Then, the apex
frame in the same video is aligned by the same coordinates
as the onset. Finally, we resize all the images to 224× 224.

During training, we use the first few layers of pre-
trained Resnet-18 [15] to extract shallow features of the
magnified MEs with vector size 1024. Resnet-18 is pre-
trained on a macro-expression dataset: FER+ [20] which
share similarity in some low-level features with MEs. For
position embedding, we adopt sine and cosine functions of
different frequencies:PE(pos,2d) = sin(pos/100002d/dmodel) ,
PE(pos,2d+1) = cos(pos/100002d/dmodel), where pos is the
position in the sequence and d is the specific dimension of
dmodel.

2) Training Details: For the sparse self-attention, we set the
number of hyper-planes to np = 3 and the sequence length
L = 32. The number of hash tables is nt = 4 and attention
heads is nh = 8. Amplification factor range is [2 : 1 : 13]. We
optimize the model by ADAM optimizer with learning rate =
2× 10−4 reduced by 0.1 after every 10 epochs.

C. Experimental Results

TABLE I: Experimental Results (Accuracy/F1-score) on the
CASME II with 5 classes under the LOSO protocal.

Methods Accuracy(%) F1-score(%)

LBP-TOP + AdaBoost (2014) [21] 43.78 33.37
STRBP (2017) [22] 64.37 N/A
HIGO+Mag (2018) [10] 67.21 N/A
ME-Booster (2019) [7] 70.85 N/A
TSCNN (2019) [23] 80.97 80.70
Graph-tcn (2020) [9] 73.98 72.46
AU-GCN (2021) [24] 74.27 70.47

Ours 81.06 78.42

In the comparison with other reported methods, we present
some works using hand-crafted features like LBP-SIP [28],
LBP-TOP + AdaBoost [21], STRBP [22], etc. We also present
the state-of-the-art MER studies conducted on three databases,
including those with techniques magnifying ME intensity, e.g.,
HIGO+Mag [10], ME-Booster [7], Graph-tcn [9], AU-GCN



TABLE II: Experimental Results (Accuracy/F1-score) on the
SAMM with 5 classes under the LOSO protocal.

Methods Accuracy(%) F1-score(%)

DSSN (2019) [25] 57.35 46.44
TSCNN (2019) [23] 71.76 69.42
Graph-tcn (2020) [9] 75.00 69.85
MTMNet (2020) [26] 74.10 73.60
AU-GCN (2021) [24] 74.26 70.45
GEME (2021) [27] 65.44 54.67
MERSiamC3D (2021) [4] 64.03 60.00

Ours 77.61 74.32

TABLE III: Experimental Results (Accuracy/F1-score) on the
SMIC-HS with 3 classes under the LOSO protocal.

Methods Accuracy(%) F1-score(%)

LBP-SIP (2014) [28] 62.80 N/A
STRBP (2017) [22] 60.98 N/A
Dual-Inception Network (2019) [29] 66.00 67.00
3D-CNNs (2019) [5] 66.30 N/A
TSCNN (2019) [23] 72.74 72.36
MTMNet (2020) [26] 76.80 74.40
GEME (2021) [27] 64.63 61.58

Ours 79.88 75.50

[24], and those deep models, e.g., TSCNN [23], 3D-CNNs
[5], MERSiamC3D [4], DSSN [25], GEME [27]. Results are
shown in TABLE I, II, III.

1) Comparison Results to Methods Magnifying ME Inten-
sity: From the tables above, we can observe that we improve
the accuracy by 10.25% compared with ME-Booster and
by 13.25% compared with HIGO+Mag on the CASME II,
both of which adopt Eulerian Motion Magnification (EMM)
for magnification. Moreover, on the SAMM, our method
exceeds other state-of-the-art MER methods, i.e., Graph-tcn,
AU-GCN by 2.61% and 3.35%, respectively, which adopt the
same magnification technique as ours. These MER methods
adopt magnification techniques by setting a unified AF for
all ME samples, which is not suitable and can bring noise
on some samples. While in our framework, we use a multi-
magnification strategy and meanwhile suppress the noise via
SSA blocks to make learned features more discriminative,
which is shown to be more effective.

2) Comparison Results to Hand-Crafted Features and Deep
Models: Our method also surpasses early hand-crafted fea-
tures by a large margin, e.g., LBP-TOP + AdaBoost, LBP-
TOP, which demonstrates the superiority of deep networks in
extracting ME-specific features. Moreover, we also achieve
better results on all three databases than most state-of-the-art
deep models, e.g., TSCNN, 3D-CNNs, MERSiamC3D, DSSN,
GEME. Merely on the CASME II, TSCNN presents higher
F1-score than ours by 2.28%. We have carefully checked its
ablation experiments and found that dynamic-temporal and
static-spatial information are two major modules having more
discriminative ability to represent a ME video clip. Similar
with TSCNN, our method also focuses on the dynamic-
temporal and static-spatial information. However, instead of

Fig. 4: An example (sub02/EP03 02f on the CASME II) of
the sparse attention matrix

∑
(i,j)∈Ωi,j

softmax(
qik

T
j√

dk
) where

darker color denotes larger values. The rows represent the
index of q and the columns represent the index of k.

directly encoding these useful clues, ours designs ME se-
quence reconstruction to enhance both clues. Thus, MRN can
achieve better performance on the other two databases.

D. The Effectiveness of Locality Sensitive Hashing

In order to validate that the magnified images with excessive
noise can be discarded through sparse representation of the
attention matrix, we retrieve the feature vectors q and k

and plot the result
∑

(i,j)∈Ωi,j
softmax(

qik
T
j√

dk
)V by only

operating product of q and k in the same hush bucket. Then
we verify them with the frames from reconstructed sequence.
Large indexes of q and k denote features from magnified
frames with large amplification factors. As shown in Fig. 4.

It’s clear to see that in general, non-zero elements are
concentrated near the diagonal of the matrix, which demon-
strates higher correlation between adjacent frames than distant
frames. Besides, the lower right corner of the matrix where
q and k are with large indexes (corresponding to images
with large AF), is almost entirely zero values, indicating
the effectiveness LSH for removing distorted images in the
reconstructed sequence. There are exceptions that some feature
vectors sharing adjacent indexes are hushed into different
buckets, e.g., k20, q9,k17. We speculate that when the hyper-
planes are partitioned, some two vectors close to each other
may fall into two adjacent buckets, even if their distance are
closer than features in the same bucket. Nonetheless, its impact
is limited since we employ multi-head attention to extract
multiple levels of information, thus the experimental results
are not seriously depraved.

E. Ablation Study

1) Settings on Amplification Factor Range: In sequence
reconstruction procedure, when we operate magnification on a
ME sample with a set of AFs, the movements of facial muscles



get more apparent as the AF grows. If we set AF too small,
the magnified ME movements may be undiscriminative for
extracting class-specific features. Therefore, to make all MEs
are sufficiently magnified, and simultaneously to reduce the
chance that images are completely deformed due to excessive
magnification occupy the majority of the whole sequence,
we conducted a set of experiments on setting the range of
amplification factors. In our practice, we fix the left bound of
factor range as 2 and dedicate to find the right bound with
best performance. Results are shown in TABLE IV.

TABLE IV: Settings for Magnification Range

Database

Acc(%) AF

11 12 13 14 15 16

CASME II 76.79 78.22 81.06 80.21 79.55 79.55
SAMM 72.35 76.65 77.61 77.52 75.59 75.12
SMIC-HS 78.46 79.27 79.88 78.91 78.42 75.25

From the chart above, the performance first grows with
amplification factors and then falls. We speculate that when
the AF is overlarge, the noise dominates the reconstructed
sequence, resulting in the attention matrix so sparse that the
network fails to extract enough motion clues. Therefore, we
uniformly set AFs range [2 : 1 : 13] in our experiments.

2) Hyper-Planes np and Multi-Hashtables nt: The sparsity
of SSA is partly controlled by the number of hyper-planes cut
in the space, or rather, by the number of hash buckets. If
noise dominates the sequence while the number of buckets is
relatively small, SSA would barely separate them into discrete
buckets. If the hyper-planes are redundant in the space, the
chance of hashing queries and keys with high correlation
into different buckets would increase. On the contrary, multi-
hashtables could reduce that chance, but at a price of in-
creasing the computational cost linearly. Therefore, in order
to find a trade-off between two hyper-parameters, we conduct
experiments with different combination. Specifically, we set
np = {1, 2, 3, 4, 5, 6} and nt = {1, 2, 4, 8}, respectively.
Results are shown in TABLE V.

TABLE V: Ablation study on number of hyper-planes np and
hashtables nt. Only results on the CASME II are shown.

nt

np 1 2 3 4 5 6

1 75.22 76.49 78.25 76.55 74.12 73.35
2 76.79 77.51 79.68 77.37 76.25 73.21
4 78.15 79.02 81.06 77.45 76.25 73.74
8 78.57 79.47 80.48 78.36 76.78 74.36

As shown in TABLE V, the performance of SSA peaks at
np = 3 and then deteriorates as the increment of np. When
the number of buckets and hashtables are both set to 1, the
result is approximate to that of the full attention, indicating
that exiguous hash buckets are insufficient to distinguish
information effectively. Meanwhile, the performance presents
a clear downward trend when np ≥ 3 even with higher nt.

This is mainly because redundant sub-regions in the space are
liable to hash highly correlated features into separate buckets.
On the other hand, increasing the number of nt does facilitate
performance improvement but not play a decisive role.

3) Full Attention versus Sparse Attention: To testify the
proposed sparse self-attention could effectively zero out mag-
nification noise, we conducted a set of comparative experi-
ments on three databases. Moreover, we compare the SSA with
standard self-attention in terms of computational efficiency.
The number of hash buckets is exponential to the number
of hyper-planes, denoted as w = 2np , thus the average size
of a hush bucket is L

np
. For the sake of simplicity, we only

focus on the result of hashing one time, so the maximum time
complexity of SSA is calculated as w( L

2np
)2. While the full-

attention requires more cost since computational complexity
is quadratic to sequence length, especially when the length is
large. Our results are demonstrated in TABLE VI.

TABLE VI: Effect of Sparsity Constraints.

Time Complexity
O(N)

Acc(%)
CASME II SAMM SMIC-HS

Full-Attention bnhL
2 78.45 75.57 75.02

SSA bnhntw( L
2w

)2 81.06 77.61 79.88

As shown in TABLE VI, the SSA yields better perfor-
mance on three databases compared with the standard one.
By imposing sparsity constraints, the network could retain the
ability to model dependencies in long sequences while zero
out some defective magnification information. When operating
full-attention, although irrelevant noise could be assigned
smaller scores, the performance still suffers especially when
the noise dominates the whole sequence, which indicates that
knowing where to attend is more important than attending all.

IV. CONCLUSION

In this work, a magnification-robust network (MRN) is
proposed to tackle the “magnification noise” problem which is
scarcely noticed in MER. To be specific, in order to effectively
extract motion features from a ME video, a substitutive se-
quence with more powerful ability to encode facial movements
is reconstructed via a magnification technique. Subsequently,
we impose sparsity constraints into standard self-attention
using Locality Sensitive Hashing (LSH) to zero-out noise
brought by magnification process. SSA globally attends the
highly-correlated clues and disregards noise, resulting in a
more robust operation. While preserving the ability of model-
ing long sequences, SSA also reduces the computational com-
plexity. Extensive experiments implemented on three public
databases, i.e., CASME II, SMIC-HS and SAMM demonstrate
the effectiveness and superiority of our framework.
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