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Abstract—Cross-Database Micro-Expression Recognition (CD-
MER) aims to develop the Micro-Expression Recognition (MER)
methods with strong domain adaptability, i.e., the ability to recog-
nize the Micro-Expressions (MEs) of different subjects captured
by different imaging devices in different scenes. The development
of CDMER is faced with two key problems: 1) the severe feature
distribution gap between the source and target databases; 2) the
feature representation bottleneck of ME such local and subtle
facial expressions. To solve these problems, this paper proposes a
novel Transfer Group Sparse Regression method, namely TGSR,
which aims to 1) optimize the measurement and better alleviate
the difference between the source and target databases, and 2)
highlight the valid facial regions to enhance extracted features,
by the operation of selecting the group features from the raw face
feature, where each region is associated with a group of raw face
feature, i.e., the salient facial region selection. Compared with
previous transfer group sparse methods, our proposed TGSR has
the ability to select the salient facial regions, which is effective
in alleviating aforementioned problems for better performance
and reducing the computational cost at the same time. We use
two public ME databases, i.e., CASME II and SMIC, to evaluate
our proposed TGSR method. Experimental results show that our
proposed TGSR learns the discriminative and explicable regions,
and outperforms most state-of-the-art subspace-learning-based
domain-adaptive methods for CDMER.

I. INTRODUCTION

Micro-Expression (ME) is a low amplitude and short du-
ration facial expression which may reflect subjects’ gen-
uine emotions[1], [2].It is indispensable in many fields, such
as criminal investigations[3], clinical diagnosis[4], human-
computer interaction[5], [6], etc.

Due to the huge potential value of MEs, many efforts
have been made to design an automatic Micro-Expression
Recognition (MER) system over the last few decades[7],
[8], [9], [10], [11]. They developed many subspace-learning-
based methods[12], [7], [13] and deep learning methods[14],
[15], and promoted the rapid development of automated MER
technology. However, most existing methods are evaluated on
a single database, which may sharply drop the performance
when applied in domains different from the training database,
such as imaging devices, subjects, scenes, etc.

To learn a domain-robust MER model, researchers have
turned their interests to the domain-adaptive MER method re-
cently. A new challenging topic has thus emerged, i.e., Cross-
Database Micro-Expression Recognition (CDMER). It mimics
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the domain variation problem and evaluates the method’s
adaptive ability by the operation of training the model in
one micro-expression database, i.e., the source database, and
testing in the other one, i.e., the target database. CDMER[16],
[17], [18] is faced with two problems: 1) the severe feature
distribution gap between the source and target databases, and
2) the feature representation bottleneck of ME such a subtle
and local facial expressions. Past research has proposed many
subspace-learning-based methods to yield a similar and effec-
tive feature to bridge this gap between the source and target
domains and effectively advance the MER model’s adaptive
ability. However, existing CDMER models’ performance is
still far from satisfactory.

Salient facial region is an approach to enhancing the few
but discriminative regions and suppressing the many but noisy
regions, aiming to improve performance and reduce computa-
tional cost simultaneously. It has been widely validated that the
salient region selection approach benefits emotion recognition
performance. Inspired by this, we introduce a learnable binary
sparse regression matrix shared between the source and target
databases, and propose a novel Transfer Group Sparse Regres-
sion method (TGSR) to cope with the CDMER problem with
the assistance of salient facial region selection technology. Our
proposed TGSR contains three terms: a regression term with
the learnable matrix for bridging micro-expression features
and labels, a joint feature distribution regularization term
for measuring and alleviating the difference between source
and target databases, and a regression matrix sparse term to
promote our proposed TGSR learns the few but discriminative
region feature. Especially, the salient facial region selection in
our proposed TGSR is achieved by the operation of selecting
the group features from the raw features, where each region
is associated with a group of raw face features. And the facial
region selection is aimed to seek the discriminative regions
for 1) optimizing the measurement and better alleviating the
difference between the source and target databases, and 2)
highlighting the valid facial regions to enhance extracted
features, which will significantly improve the performance of
CDMER model. In addition, facial region selection can also
reduce the computational cost when pursuing better CDMER
performance. We evaluate our method on CASME II[19] and
SMIC[20] databases. Experimental results and corresponding
visualization show that our proposed TGSR can seek the
salient and explicable facial regions to alleviate the afore-



mentioned problems effectively and outperform most state-of-
the-art subspace-learning-based domain-adaptive methods for
CDMER.

II. METHOD

A. The Generation of Micro-Expression Features

Extracting facial features is the first step for CDMER.
As Fig. 1 shown, we firstly use the grid-based multi-scale
spatial division scheme[21] to divide the cropped ME sequence
into four scales in total of K regions, i.e., K spatial local
sequences. Then we extracted d-dimensional feature xk of
K facial region, k ∈ [1,K], and obtain sample’s multi-
scale hierarchical feature xν =

[
xT
1 , · · · ,xT

K

]T ∈ RKd

by concatenating region features one by one. Suppose that
we have Ns source and Nt target micro-expression samples,
the feature matrix of the source and target databases can

be denoted as Xs =
[
Xs

1
T, · · · ,Xs

K
T
]T

∈ RKd×Ns and

Xt =
[
Xt

1
T
, · · · ,Xt

K
T
]T

∈ RKd×Nt , respectively. Here,
each column of Xs and Xt is a feature vector like xν ,
they respectively denote the feature of single micro-expression
sample from the corresponding databases. Xs

i ∈ Rd×Ns and
Xt

i ∈ Rd×Nt respectively denote the group feature corre-
sponding to the i-th facial region from the source and target
databases. The labels of source micro-expression database is
denoted by Ls = [ls1, · · · , lsNs

] ∈ RC×Ns , where C is the
total category number and the j-th column of Ls denotes the
label vector of j-th source micro-expression sample. The label
vector of j-th sample lsj = [lsj,1, · · · , lsj,C ]T is a one-hot vector
in which only one element lsj,c equals one and the others are
zero. It indicates that j-th sample from the source database
belongs to c-th micro-expression category.

···

Fig. 1. The grid-based multi-scale spatial division scheme for extracting
micro-expression features.

B. Proposed Method

The basic idea of our proposed Transfer Group Sparse Re-
gression method (TGSR) is improve the CDMER performance

by sailent facial region selection approach, i.e., selecting
the group features from the raw face feature, where each
region is associated with a group of raw face feature. Our
proposed TGSR contains three terms: 1) a regression term with
the learnable regression matrix for bridging micro-expression
features and labels, 2) a joint feature distribution regularization
term for measuring and alleviating the difference between
source and target databases, and 3) a regression matrix sparse
term to promote our proposed TGSR learns the few but dis-
criminative region feature, which can be denoted as Equ. (1),

min
Ci

∥∥∥∥∥Ls −
K∑
i=1

CT
i X

s
i

∥∥∥∥∥
2

F

+ ξf1(Ci) + λf2(Ci), (1)

where C = [CT
1 , ...,C

T
K ]T ∈ RKd×C is such a domain-

invariant regression matrix, the sub-matrix Ci of C is to
construct the relation between the group feature of i-th facial
region and corresponding sample labels, f1(Ci) is the joint
feature distribution regularization term, f2(Ci) is the regres-
sion matrix sparse term, and ξ and λ the weighting hyper-
parameters of f1(Ci) and f2(Ci).

By minimizing f1(Ci) together with the regression term,
we can alleviate the database difference. We use the maximum
mean discrepancy (MMD) to serve as this regularization term,
which can be expressed as Equ. (2),

MMD
(
Xs,Xt

)
=∥∥∥∥∥ 1

Ns

K∑
i=1

Φ (Xs
i )1s −

1

Nt

K∑
i=1

Φ
(
Xt

)
1t

∥∥∥∥∥
H

,
(2)

where Φ(·) is a kernel mapping operator projecting micro-
expression features from the original space to an infinite one,
1s ∈ RNs and 1t ∈ RNt are the vectors filled with scalar
value one which used to convert the source and target features
into scalar values respectively. However, the kernel mapping
operator is unsolvable, so we further modify the MMD into
Equ. (3) to serve as f1(Ci),

f1 (Ci) =

∥∥∥∥∥ 1

Ns

K∑
i=1

CT
i X

s
i 1s −

1

Nt

K∑
i=1

CT
i X

t
i1t
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2

F

. (3)

By relaxing the difference measurement involving kernel-
mapped feature into the difference in label space, Equ. (2)
becomes solvable. f2(Ci) is defined as Equ. (4). Our proposed
TGSR is promoted to select the few but discriminative regions
when minimizing f2(Ci) together with the regression matrix.

f2 (Ci) = λ

K∑
i=1

∥Ci∥F . (4)

By substituting Equ. (3) and Equ. (4) into Equ. (1), we can
rewrite the objective function of Equ. (1) into Equ. (5),

min
Ci
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i X
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i
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2

F

+ λ
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2

F

.

(5)



C. Optimization

We can use the Alternative Direction Method (ADM)[22]
and Inexact Augmented Lagrangian Multiplier (IALM)[23] to
solve Equ. (5) involving facial region selection technology,
i.e., selecting the group features of the raw face features, under
presetting salient region number.

We firstly rewrite Equ. (5) into Equ. (6),

min
Ci

∥∥∥∥∥L̃−
K∑
i=1

CT
i X̃i

∥∥∥∥∥
2

F

+ λ

K∑
i=1

∥Ci∥F , (6)

where L̃ = [Ls,0], 0 ∈ RC×1, X̃i =[
Xs

i ,
√
ξ( 1

Ns
Xs

i 1s − 1
Nt

Xt
i1t)

]
. Then we introduce a

new variable D = [DT
1 , · · · ,DT

K ]T equals to variable
C = [CT

i , · · · ,CT
K ]T, and convert the optimization of

Equ. (6) into a constrained one as Equ. (7),

min
C,D

∥∥∥∥L̃−
K∑
i=1

DT
i X̃i

∥∥∥∥2
F

+ λ
K∑
i=1

∥Ci∥F ,

s. t.Di = Ci.

(7)

Subsequently, we can obtain the corresponding augmented
Lagrange function as Equ. (8) shown,

Γ (Ci,Di,Pi, µ) =

∥∥∥∥∥L̃−
K∑
i=1

DT
i X̃i

∥∥∥∥∥
2

F

+ λ

K∑
i=1

∥Ci∥F

+

K∑
i=1

tr
[
PT

i (Ci −Di)
]
+

µ

2

K∑
i=1

∥Ci −Di∥2F ,

(8)

where Pi ∈ Rd×C denotes the Lagrangian multiplier matrix
corresponding to the i-th facial region, and µ is the weighting
hyper-parameter.

We can obtain the optimal solution Ĉi of Ci when mini-
mizing the Lagrange function of Equ. (8) by iteratively update
Ci and Di. Specifically, we need to repeat the following four
steps until convergence, and Algorithm 1 show more details:

1) Fix C, P , µ and update D:
In this step, the optimization problem with respect to the

sub-matrix Di of D can be written as Equ. (9),

min
D

∥∥∥L̃−DTX̃
∥∥∥2
F
+ tr

[
PT (C −D)

]
+

µ

2
∥C −D∥2F ,

(9)

where PT = [PT
1 , · · · ,PT

K ], P ∈ RKd×C , Pj ∈ Rd×C . The
closed-form solution of Equ. (9) as Equ. (12) shows.

2) Fix D, P , µ update C:
In this step, the optimization problem with respect to the

sub-matrix Ci of C can be written as Equ. (10),

min
Ci

λ

K∑
i=1

∥Ci∥F +

K∑
i=1

tr
[
PT

i (Ci −Di)
]

+
µ

2

K∑
i=1

∥Ci −Di∥2F .

(10)

We can convert Equ. (10) into Equ. (11), and obtain the
optimal C using Equ. (13).

min
Ci

K∑
i=1

(
λ

µ
∥Ci∥F +

1

2

∥∥∥∥Ci − (Di −
Pi

µ
)

∥∥∥∥2
F

) (11)

3) Update P and µ.
4) Check the convergence of ∥C −D∥∞ < ε.

Algorithm 1 The Algorithm for solving the optimal regression
matrix C in our proposed TGSR method.

Input: Data matrix L̃ and X̃ = [X̃T
1 , · · · , X̃T

K ]T, the salient
facial region number κ, the scalar parameter ρ, µmax.

• Initializing the regression matrix C = [CT
1 , · · · ,CT

K ]T

• Initializing the Lagrangian multiplier matrix P =
[PT

1 , · · · ,PT
K ]T and the weighting coefficient µ.

Repeating steps 1) to 4) until convergence.
1: Fix C,P , µ and update D:

D =
(
µIKd + 2X̃X̃T

)−1 (
2X̃L̃T + P + µC

)
, (12)

where IKd ∈ RKd×Kd is the identity matrix.
2: Fix D,P , µ and update C:

Calculate di =

∥∥∥∥∥Di −
Pi

µ

∥∥∥∥∥
F

, and sort the value of

di, such that di1 ≥ di2 ≥ · · · ≥ diK , Let λ = µdiκ+1
,

then update C according to

Ci =


di − λ

µ

di
(Di −

Pi

µ
), λ

µ < di,

0, λ
µ ≥ di.

(13)

3: Update P and µ:
P = P + µ (D −C), µ = min (ρµ, µmax)

4: Check convergence:
∥C −D∥∞ < ε

Output: The solution Ĉ of regression matrix C.

D. Application for CDMER

Based on the labeled source and the unlabeled target
databases, we can solve the optimal solution Ĉ of regression
matrix C using aforementioned optimization approach. Then,
we can extract the feature xte

i ∈ RKd of the micro-expression
sample to be predicted and estimate the label vector lte by
solving the optimization problem as Equ. (14),

min
lte

∥∥∥∥lte − K∑
i=1

ĈT
i x

te
i

∥∥∥∥2
F

,

s. t. lte ≥ 0.1Tlte = 1,

(14)

where Ĉi ∈ Rd×C is the optimal solution of the regression
matrix for the i-th facial spatial local region, and ĈT =[
ĈT

1 , · · · , ĈT
K

]
, ĈT ∈ RC×Kd, lte ∈ RC . Then we can use

ĉ = argmaxj
{
ltej

}
to assign this micro-expression sample



to the largest entry index of the predicted label vector, i.e.,
micro-expression category ĉ.

TABLE I
THE STATISTICS OF SELECTED CASME II AND SMIC DATABASE.

Dataset Category
Positive Negative Surprise

Selected CASME II 32 73 25
SMIC-HS 51 70 43
SMIC-VIS 23 28 20
SMIC-NIR 23 28 20

III. EXPERIMENT

A. Experiment Setup

1) Database: We evaluated our method on Selected
CASME II and SMIC databases. CASME II[19] contains
255 micro-expression samples from 26 subjects with seven
category micro-expressions, i.e., Disgust, Fear, Happiness,
Others, Repression, Sadness, and Surprise. We selected the
samples of Disgust, Happiness, Repression, and Surprise to
be the Selected CASME II. SMIC[20] records 306 micro-
expression samples from 16 subjects in three modalities with
three category micro-expressions, i.e., Positive, Negative, and
Surprise. The SMIC-HS subset contains 164 micro-expression
samples captured by a high-speed camera at 100 frames/s.
The SMIC-VIS subset contains 71 micro-expression samples
captured by a general visual camera at 25 frames/s. The SMIC-
NIR subset contains 71 micro-expression samples captured by
a near-infrared camera. In order to make the Selected CASME
II and SMIC databases share the same label categories, we
converted the labels of Selected CASME II: relabelled the
label Happiness into Positive; relabelled the labels Disgust
and Repression into Negative; maintained the label Surprise
with Surprise. Tab. I summarize the essential information.

2) Protocol: The cross-database protocol is designed to
develop models with promising domain adaption performance
operated by training the model in the Source database (S)
and testing in the Target database (T), which is denoted as
S→T. Following [21], we employed two types of unsuper-
vised CDMER experiments: TYPE-I is implemented between
every two subsets of SMIC, and TYPE-II is implemented
between Selected CASME II and any subset of SMIC. We
denote SMIC-HS, SMIC-VIS, and SMIC-NIR as H, V, N,
and CASME II as C for short. Specially, TYPE-I experiment
includes six experiments: H→V, V→H, H→N, N→H, V→N,
N→V, TYPE-II experiment consists of another six experi-
ments: C→H, H→C, C→V, V→C, C→N, N→C.

3) Evaluation Metrics: We employed macro F1-score (M-
F1) and accuracy (ACC) to evaluate our method. Macro F1-
score is calculated by M − F1 = 1

C

∑C
c=1

2pcrc
pc+rc

, where pc
and rc are the precision and recall of the c-th category micro-
expression, and C is the category number. M-F1 is appropriate
because the unbalanced sample problem widely existed in the
CDMER.

4) Data pre-processing: We firstly cropped the whole face
of each ME sequence using the bounding box from the first
frame. Then we employed the Temporal Interpolation Model
(TIM)[33], [34] to convert the ME sequence into fixed 16
frames in temporal. And resized each frame into 112 × 112
pixels in spatial.

5) Feature extraction: For each ME sequence, we used a
grid-based multi-scale spatial division scheme to divide the
whole face into four scales of 1 × 1, 2 × 2, 4 × 4, 8 × 8,
a total of K = 85 local face sequences, i.e., facial regions.
Then extracted and concatenated the corresponding LBP-TOP
features[12] of these facial regions to serve as the micro-
expression representation. Here, the neighboring radius of
LBP-TOP and the number of neighboring points are set to
R = 3 and P = 8.

6) Training setting: Two hyper-parameters are involved
in solving our proposed TGSR, i.e., the salient facial re-
gion number κ and the weighting hyper-parameter ξ of the
MMD term. Following the work of [31], [21], we used a
grid-based searching strategy to search the optimal hyper-
parameters of our proposed TGSR for achieving the best M-
F1 performance. We reported both M-F1 and ACC metrics
under the optimal setting. Specially, we searched the hyper-
parameter κ from a preset parameter interval [1:1:85], and
searched the hyper-parameter ξ from a preset parameter in-
terval [0.001:0.0002:0.01 0.01:0.002:0.1 0.1:0.02:1 1:0.2:10
10:2:100 100:20:1000].

B. Results and Analysis

1) Overall results: We bold-lighted the best result of each
experiment in Tab. II and Tab. III. We observed that our
proposed TGSR outperforms those state-of-the-art methods
beyond half experiments and achieved the best performance
in 7 of total 12 CDMER experiments. It indicates that our
proposed TGSR has the ability to cope with the CDMER
problem effectively. We also reported the hyper-parameters to
achieve this performance. In the TYPE-I experiments, from
Exp.1 to Exp.6, the best M-F1 is achieved at the hyper-
parameters (κ,ξ) value of (85, 0.0022), (46, 0.0036), (14,
4000), (85, 0.0044), (12, 44), (12, 280), respectively. In the
TYPE-II experiments, from Exp.7 to Exp.12, the best M-
F1 is achieved at the hyper-parameters (κ,ξ) value of (62,
0.0012), (28, 0.0980), (85, 0.0030), (85, 0.0280), (85, 0.0016),
(75, 0.0220), respectively. The best performance tends to
select the few but discriminative regions rather than all facial
regions. And our proposed TGSR also displays competitive
performance on those experiments that do not work best. It
also indicates the effectiveness of our salient facial region
selection strategy.

2) Difference analysis: Two apparent performance charac-
teristics involving database difference can be found in Tab. II
and Tab. III.

Firstly, we observe that the results of TYPE-I experiments
are generally better than TYPE-II experiments. We believe the
experimental setup itself caused it. The TYPE-I experiments
selected two subsets of SMIC database with different imaging



TABLE II
THE RESULTS OF TYPE-I CDMER EXPERIMENTS ARE BASED ON ANY TWO SUBSETS OF SMIC, I.E., SMIC-HS, SMIC-VIS, AND SMIC-NIR. THE

MICRO-EXPRESSION CATEGORY INCLUDES Negative, Positive, AND Surprise. THE BEST RESULTS FROM EACH EXPERIMENT ARE SHOWN IN BOLD. WE USE
MACRO F1-SCORE (M-F1) AND ACCURACY (ACC) TO EVALUATE METHODS.

Method Exp.1(H→V) Exp.2(V→H) Exp.3(H→N) Exp.4(N→H) Exp.5(V→N) Exp.6(N→V) Average
M-F1 ACC M-F1 ACC M-F1 ACC M-F1 ACC M-F1 ACC M-F1 ACC M-F1 ACC

SVM[24] 0.8002 80.28 0.5421 54.27 0.5455 53.52 0.4878 54.88 0.6186 63.38 0.6078 63.38 0.6003 61.62
IW-SVM[25] 0.8868 88.73 0.5852 58.54 0.7469 74.65 0.5427 54.27 0.6620 69.01 0.7228 73.24 0.6911 67.74
TCA[26] 0.8269 83.10 0.5477 54.88 0.5828 59.15 0.5443 57.32 0.5810 61.97 0.6598 67.61 0.6238 64.01
GFK[27] 0.8448 84.51 0.5957 59.15 0.6977 70.42 0.6197 62.80 0.7619 76.06 0.8142 81.69 0.7223 72.44
SA[28] 0.8037 80.28 0.5955 59.15 0.7465 74.65 0.5644 56.10 0.7004 71.83 0.7394 74.65 0.6917 69.44
STM[29] 0.8253 83.10 0.5059 51.22 0.6628 66.20 0.5351 56.10 0.6427 67.61 0.6922 70.42 0.6440 65.78
TKL[30] 0.7742 77.46 0.5738 57.32 0.7051 70.42 0.6116 62.20 0.7558 76.06 0.7580 76.06 0.6964 69.92
TSRG[31] 0.8869 88.73 0.5652 56.71 0.6484 64.79 0.5770 57.93 0.7056 70.42 0.8116 81.69 0.6991 70.05
DRLS[32] 0.8604 85.92 0.6120 60.98 0.6599 66.20 0.5599 55.49 0.6620 69.01 0.5771 61.97 0.6552 66.60

Ours 0.9150 91.55 0.6226 62.20 0.5847 60.56 0.6272 61.59 0.6984 70.42 0.8403 84.51 0.7141 71.80

TABLE III
THE RESULTS OF TYPE-II CDMER EXPERIMENTS ARE BASED ON SELECTED CASME II DATABASE AND ANY ONE SUBSET OF SMIC DATABASES, I.E.,
ONE OF SMIC-HS, SMIC-VIS, AND SMIC-NIR. THE MICRO-EXPRESSION CATEGORY INCLUDES Negative, Positive, AND Surprise. THE BEST RESULTS

FROM EACH EXPERIMENT ARE SHOWN IN BOLD. WE USE MACRO F1-SCORE (M-F1) AND ACCURACY (ACC) TO EVALUATE METHODS.

Method Exp.7(C→H) Exp.8(H→C) Exp.9(C→V) Exp.10(V→C) Exp.11(C→N) Exp.12(N→C) Average
M-F1 ACC M-F1 ACC M-F1 ACC M-F1 ACC M-F1 ACC M-F1 ACC M-F1 ACC

SVM[24] 0.3697 45.12 0.3245 48.46 0.4701 50.70 0.5367 53.08 0.5295 52.11 0.2368 23.85 0.4112 45.55
IW-SVM[25] 0.3541 41.46 0.5829 62.31 0.5778 59.15 0.5537 54.62 0.5117 50.70 0.3456 36.15 0.4876 50.73
TCA[26] 0.4637 46.34 0.4870 53.08 0.6834 69.01 0.5789 59.23 0.4992 50.70 0.3937 42.31 0.5177 53.45
GFK[27] 0.4126 46.95 0.4776 50.77 0.6361 66.20 0.6056 61.50 0.5180 53.52 0.4469 46.92 0.5161 54.31
SA[28] 0.4302 47.56 0.5447 62.31 0.5939 59.15 0.5243 51.54 0.4738 47.89 0.3592 36.92 0.4877 50.90
STM[29] 0.3640 43.90 0.6115 63.85 0.4051 52.11 0.2715 30.00 0.3523 42.25 0.3850 41.54 0.3982 45.61
TKL[30] 0.4582 46.95 0.4661 54.62 0.6042 60.56 0.5378 53.08 0.5392 54.93 0.4248 43.85 0.5051 52.33
TSRG[31] 0.5042 51.83 0.5171 60.77 0.5935 59.15 0.6208 63.08 0.5624 56.34 0.4105 46.15 0.5348 56.22
DRLS[32] 0.4924 53.05 0.5267 59.23 0.5757 57.75 0.5942 60.00 0.4885 49.83 0.3838 42.37 0.5102 53.71

Ours 0.5001 51.83 0.5061 56.92 0.5906 59.15 0.6403 63.85 0.5697 57.75 0.4474 48.46 0.5424 56.33

SMIC-HS CASME II

Source Target

SMIC-NIR SMIC-VIS

Source Target

SMIC-VIS SMIC-NIR

Source Target

Fig. 2. The salient facial regions selected by our proposed TGSR method in three cross-database micro-expression recognition tasks. The sub-matrix Ĉi

corresponding to the salient regions is the matrix filled with scalar one.

modalities and TYPE-II experiments used Selected CASME
II and one subset of SMIC database, as the source and target
databases respectively. It is clear that the database differences
of TYPE-I experiments are more significant than TPYE-II
experiments.

Secondly, we find that a noticeable performance gap ex-
isted in those experiments exchanging the source and tar-
get databases: all performance on Exp.1(H→V) are gener-
ally better than those on Exp.2(V→H); all performance on
Exp.3(H→N) are generally better than those on Exp.4(N→H);
all performance on Exp.11(C→N) are generally better than
those on Exp.12(N→C). Exp.1(H→V) used the a high-speed

camera captured image sequences from the SMIC-HS subset
as the source database and the general visual camera captured
image sequence from the SMIC-VIS subset as the target
database, which is exchanged in Exp.2(V→H). Exp.3(H→N)
used colored image sequences captured by high-speed camera
from SMIC-HS subset as the source database and the un-
colored near-infrared image sequence from SMIC-NIR subset
as the target database, which is exchanged in Exp.4(N→H).
Exp.11(C→N) used colored image sequences from Selected
CASME II database as the source database and uncolored im-
age sequences from SMIC-NIR subset as the target database,
which is exchanged in Exp.12(N→C). We believe the reason
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Fig. 3. The performance curve of our proposed TGSR method under
different hyper-parameter κ, i.e., the salient facial region number. (a) shows
the experimental results of Exp.8(H→C) and (b) shows the experimental
results of Exp.4(H→N).

(a)

(b)

Fig. 4. The performance curve of our proposed TGSR method under
different hyper-parameter ξ, i.e., weighting hyper-parameter of the MMD
term. (a) shows the experimental results of Exp.1(H→V) and (b) shows the
experimental results of Exp.12(N→C).

why the performances on Exp.1(H→V) are generally better
than Exp.2(V→H) and the performances on Exp.3(H→N) are
generally better than Exp.4(N→H) is that high-speed camera
can capture more subtle facial movements. And the reason why
the performances on Exp.11(C→N) are generally better than
Exp.12(N→C) is that the Selected CASME II database retains
but the SMIC-NIR subset discards color information such cru-
cial cue for understanding human facial expressions[35]. In ad-
dition, we observe that although Exp.3(N→H)-Exp.4(N→H)
pair and Exp.11(C→N)-Exp.12(N→C) pair both have a color
difference between the source and target databases, the model
performance gap between Exp.11(C→N)-Exp.12(N→C) pair
is more significant than Exp.3(N→H)-Exp.4(N→H) pair. It

may be due to other database differences other than the color.
3) Hyper-parameter Discussion: Two hyper-parameters are

involved in solving the optimal regression matrix Ĉ of
proposed our proposed TGSR, i.e., the salient facial region
number κ and the MMD weighting hyper-parameter ξ. The
setting of these hyper-parameters affects model performance,
thus we conducted two experiments to investigate the model
sensitiveness to hyper-parameters κ and ξ.

The number of salient facial regions. In the first experi-
ment, we fixed hyper-parameter ξ and varied hyper-parameter
κ from 1 to K = 85, then recorded corresponding M-F1 and
ACC metrics, to explore model the sensitiveness to hyper-
parameter κ. We selected Exp.4(H→N) and Exp.8(H→C) as
the typical of TYPE-I and TYPE-II CDMER experiments
respectively, and presented their performance curve as Fig. 3
shown. We can see that the M-F1 and ACC performance of
our proposed TGSR model increases with hyper-parameter κ
increases firstly, and reaches its peak at a low κ value, then
decreases with hyper-parameter κ increases. It means that the
salient facial regions for CDMER are exiguous. And it also
verifies the effectiveness of salient facial region selection.

The weighting hyper-parameter of MMD term. In the
second experiment, we fixed hyper-parameter κ and varied
hyper-parameter ξ from 10−3 to 103, then recorded cor-
responding M-F1 and ACC metrics, to explore the model
sensitiveness to hyper-parameter ξ. We selected Exp.1(H→V)
and Exp.12(N→C) as the typical of TYPE-I and TYPE-II
CDMER experiments respectively, and presented their perfor-
mance curve as Fig. 4 shown. It is apparent that selecting an
appropriate value of weighting hyper-parameter ξ helps our
proposed TGSR yield better performance. And the MMD term
can effectively and stably improve model performance across
a wide range of hyper-parameter ξ.

4) Visualization: We also selected Exp.5(V→N),
Exp.6(N→V), and Exp.8(H→C) as the typical to visualize the
learned salient facial regions for CDMER. From Fig. 2, we
observed that the selected facial regions are consistent with
the AU definition of micro-expressions; thus, we can believe
that our proposed TGSR achieved a competitive performance
by learning an explicable feature.

IV. CONCLUSION

This paper proposes a novel Transfer Group Sparse Regres-
sion to select the salient facial regions to better cope with
the Cross-Database Micro-Expression Recognition (CDMER)
problem. In our proposed TGSR, salient facial region selection
is achieved by the group feature selection from the raw face
feature. This operation enables our proposed TGSR to 1)
optimize the measurement and alleviate the difference between
the source and target databases and 2) highlight the valid
facial regions to enhance extracted features. In addition, this
operation can also reduce computational costs while improv-
ing performance. Experiments and visualizations show that
our proposed TGSR learns the discriminative facial regions
and outperforms most state-of-the-art subspace-learning-based
domain-adaptive methods for CDMER.
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