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ABSTRACT

Micro-Expression recognition (MER) is a challenging task
due to the short duration and low intensity of Micro-Expressions.
A popular method to tackle this is magnifying MEs so as to
enlarge the expression intensity to make recognition easier.
However, the single fixed magnification strategy, widely used
in existing works of MER, is not appropriate for different
subjects, because each subject has specific expression inten-
sity corresponding to different MEs. To cope with this issue,
we propose a novel Attention-based Magnification-Adaptive
Network (AMAN) to learn adaptive magnification levels for
the ME representation. The network consists of two modules:
magnification attention (MA module) to adaptively focus on
appropriate magnification levels of different MEs, and frame
attention (FA module) to focus on discriminative aggregated
frames in a ME video. Extensive experiments on three widely
used databases manifest that our method yields state-of-art
results compared with other methods.

Index Terms— Facial expression magnification, At-
tention mechanism, Micro-expression recognition, Transfer
learning

1. INTRODUCTION

Micro-Expression (ME) is a temporary facial expression that
appears unconsciously when people try to hide their true feel-
ings [1]. For this characteristic, it is more likely to reflect peo-
ple’s real emotions and thus contribute to potential applica-
tions in terms of clinical diagnosis and intelligence. Whereas,
compared with concious expressions, MEs are characterized
by lower intensity and shorter duration, which makes accurate
Micro-Expression Recognition (MER) a challenging task.

Targeting at the low intensity of MEs, some works attempt
to enhance the intensity of facial movements to improve
recognition performance. Lei et al. [2] adopted learning-
based video motion magnification network to magnify facial
movements of the apex frame. In this way, relations of differ-
ent facial area would be more apparent so as to promote the
performance of the posterior recognition task. Li et al. [3]
used Eulerian Motion Magnification (EMM) [4] to magnify
the apex frame from original MEs which could enlarge the

difference among different ME categories so that the network
is easier to learn discriminative features. In these works,
when choosing the level of motion magnification, they just
set one fixed level for all subjects and MEs. Nevertheless,
since different subjects have different facial anatomical struc-
ture, even for the same stimulus, different subjects would
present facial muscle movements at different intensities. In
this case, a fixed magnification level is apparently not appro-
priate for every subject, and such problem would potentially
decrease the performance of subsequent classification tasks,
as shown in Fig. 1.

To address the issue aforementioned, in this paper, we
propose a novel Attention-based Magnification Adaptive Net-
work (AMAN) to learn appropriate magnification levels for
MEs in a more flexible way. To alleviate the influence of in-
dividual differences and different pattern of MEs, we try to
design a magnification-adaptive method. Instead of setting a
fixed magnification level for all ME sequences, we use a set
of different amplification factors (AFs) for the same image.
Our network consists of two attention modules:

1. One module is for weighting different magnification
levels, namely magnification attention (MA module). In MA
module, we employ attention mechanism to assign different
weights among a set of AFs so the network is able to adap-
tively learn discriminative magnification levels.

2. The other module is designed to weight different
frames in a video, namely frame attention (FA module). In
FA module, we introduce attention mechanism to assign dif-
ferent weights among a set of selected frames so the network
is able to focus on more discriminative aggregated frames.

2. PROPOSED METHOD

2.1. Basic Idea

Videos in different ME datasets have various temporal length
[5–7]. Considerating this, for a given ME sequence, we firstly
use a Time Interpolation Model (TIM) to reconstruct the
video so that all the videos are consistent in length. Then we
successively sample n number of frames from the beginning
at a certain interval. Each selected frame is then magnified
with a set of amplification factors (AFs). After that, for a
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Fig. 1: A set of consistent magnification levels on Micro-
Expressions from different subjects. The first, second and
third row displays ’disgust’, ’happy’ and ’happy’ respectively.
Magnification levels most able to reflect real emotions vary
among different subjects and Micro-Expressions.

set of AFs corresponding to a single frame, we use a pre-
trained CNN to extract their feature representations. Next,
we use our magnification attention module (MA module) to
aggregate these representations into a frame representation.
Subsequently, for these frame representations in a video, we
employ our frame attention module (FA module) to aggregate
them into a final representation of the video. This final rep-
resentation is eventually sent into a fully-connected layer for
classfication. The whole framework is shown in Fig. 2.

2.2. AMAN Model

2.2.1. MA module

Motion magnification techniques provide us convenience to
capture small motions imperceptible to the naked eyes. In
some cases, the motion is so small that the magnification
results are inclined to noise, so MER methods using hand-
designed filters to magnify micro-expressions may not be op-
timal. Considering this, we employ deep convolutional net-
works to learn the filters directly and use tranfer learning strat-
egy to apply magnification characteristics learned in other
databases [8] to micro-expression databases. As Wu et al.
and Wadhwa et al. [4, 9] have defined on motion magnifica-
tion, a single image in a consecutive video can be described
as:

I(x, t) = f(x + δ(x, t)) (1)

where δ(x, t) is the motion field at position x and time t, our
goal is to magnify the motion so the magnified image Imag

becomes

Imag(x, t) = f(x + (1 + amp)δ(x, t)) (2)

where amp is the magnification factor.
In our practice, for a single frame selected in a ME video,

we firstly use the pre-trained network [8] to magnify it with
a set of magnification factors ranging from 1 to k, denoted
as amp1 to ampk. The network has three inputs: a magnifi-
cation factor and two images between which there is a slight

displacement (in different phases of the same video). This is
formulated as:

Iimag = f(Ion, Isel, ampi) (3)

where Ion is the onset frame. Isel is another frame in the
same video we select for magnification. Iimag is a generated
image after magnification. ampi represents amplification fac-
tor. f(·) is the network.

For a magnified image with a specific amplification fac-
tor ampi, we use the backbone network to extract its feature
representation, denoted as:

FT
i = g(Iimag) (4)

where g(·) is the backbone network, and FT
i denotes the fea-

ture representation of a single magnified image.
Since we expect that magnification levels contributing

more to recognition are weighted more importance, we as-
sign different attention scores on these feature representations
of magnified MEs from the same frame. Our MA module is
composed of a linear fully-connected (FC) layer and a sig-
moid activation function. Attention weights among feature
representations are calculated by:

αi = σ(FT
i q

0) (5)

where q0 is the parameter of FC layer, and σ(·) denotes sig-
moid function. The new weighted feature representation of a
single magnified frame can be formulated as:

F attn
i = αiF

T
i (6)

With those weighted representations of all magnified
frames, feature representation of the original frame is aggre-
gated by:

Fm =

∑k
i=1 F

attn
i∑k

i=1 αi

(7)

2.2.2. FA module

Many methods have demonstrated that the apex frame (frame
with largest movement intensity) contributes most to Micro-
Expression recognition (MER) [10, 11]. Nevertheless, in a
ME sequence, the intensity of the expression actually changes
in a consecutive way, which means that more than one frames
can be thought as ’apex’. In view of this, we use multiple
frames instead of the single apex frame in the video. Each
frame is managed with the MA module to get its feature rep-
resentation. We assign a set of attention scores on these frame
feature representions once again so the network could adap-
tively focus on more discriminative frames. The FA module
has the same structure as MA module. In this module, atten-
tion weights among these feature representations are formu-
lated as:

βj = σ(FT
mj
p0) (8)
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Fig. 2: Framework of Attention-based Magnification-Adaptive Network (AMAN).

where p0 is the parameter of another FC layer, and Fmj
de-

notes the aggregated feature representation of the j−th image
in a ME sequence. Then, the new weighted feature represen-
tation of original representation is denoted as:

F attn
mj

= βjF
T
mj

(9)

We aggregate these new frame representations with their at-
tached attention scores by:

Fv =

∑n
j=1 F

attn
mj∑n

j=1 βj
(10)

Fv is the global representation of a ME video. The net-
work takes it as the final representation for the following clas-
sification.

3. EXPERIMENTS

3.1. Experimental Setup

3.1.1. Datasets Preprocessing and Experiments Detail.

Three ME databases are used to evaluate our method: CASME
II [5], SAMM [6] and SMIC-HS [7]. On the CASME II and
the SAMM, we select categories with more than 10 sam-
ples, following the rules most methods [12, 13] adopt for five
classification. On the SMIC-HS, we use all samples in this
database. In a ME sequence, we first calculate 68 landmarks
of the whole face utilizing [13] in the onset frame and then
align the face area in line with these landmarks. All the
images are resized to 224×224.

We use Resnet-18 as our backbone to extract shallow fea-
tures of expressions. The dataset employed to pre-train is
FER2017. When fine-tuning on MEs, we freeze the former
residual blocks to extract some shallow features and release
the last residual block for fine-tuning. To avoid subject de-
pendence in the process, we adopt the leave-one-subject-out
(LOSO) cross validation.

3.1.2. Settings on Ceiling of Magnification Levels and Num-
ber of Frames.

Muscle movements in the facial area become more pro-
nounced as the AFs increase during magnification. In or-
der to ensure that most MEs are sufficiently enlarged, and
meanwhile to avoid facial deformation caused by overlarge
magnification levels, we conducted a series of comparsion
experiments on the CASME II. Related results are shown
in Tab. 1.

As Tab. 1 presents, recognition accuracy firstly grows as
the maximum level increases and then begins to decline when
the level ceiling is over nine, indicating that from this level
there may appear excessive deformation in the facial area of
most MEs. Therefore, we set k = 9 as the ceiling of magnifi-
cation level.

Table 1: Evaluation on different ceilings of magnification
level on the CASME II.

k 7 8 9 10 11

Acc(%) 69.85 72.34 75.40 69.23 66.41

To find appropriate number of frames selected in a video,
in our experiments, we set n ranging from 1 to the maximum
length(20) of the video on three datasets and plot the rela-
tion between recognization accuracy and number of frames,
as shown in Fig. 3.

As can be seen from Fig. 3, recognition accuracy does
vary with the change of n on three datasets, but not with
large fluctuation, which further reflects the robustness of our
method for selecting frames. We speculate that the robust-
ness of this lies in our network’s ability to voluntarily weight
more on the aggregated frames near the apex. We set n = 11
uniformly on three databases.
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Table 2: The accuracy (ACC(%)) and F1-score (%) of different methods under the LOSO protocal on three datasets.

MER method CASME II SAMM SMIC-HS
Acc F1-score Acc F1-score Acc F1-score

LBP-SIP (2014) [14] 66.40 N/A N/A N/A 62.80 N/A
DSSN (2019) [16] 70.78 72.97 57.35 46.44 63.41 64.62
TSCNN-I (2019) [17] 74.05 73.27 63.53 60.65 72.74 72.36
LGCconD (2020) [3] 62.14 60.00 35.29 23.00 63.41 62.00
RNMA (2020) [18] 65.90 53.90 48.50 40.20 49.40 49.60
GEME (2021) [19] 75.20 73.54 55.88 45.38 64.63 61.58
AMAN(ours) (2021) 75.40 71.25 68.85 66.82 79.87 77.08

*N/A - no results reported.
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Fig. 3: Evaluation on the number of frames n.

3.2. Ablation Study

In order to testify the effectiveness of our two modules, we
conducted a series of ablation experiments on three databases.
We kept only one module each time, and compared the results
with that of the whole network.

As shown in Tab. 3, the performance decreases greatly
when we remove MA module, which proves that our multi-
magnification method yields better performance than the
single-magnification method. Besides, the performance is
also imperfect when there is without FA module, which
demonstrates that attention mechanism in this module to
focus on discriminative frames is also indispensable.

Table 3: Accuracy(%) of ablation experimental results on the
two modules.

CASME II SAMM SMIC-HS

MA module 59.19 59.57 64.02

FA module 62.71 56.25 62.80

MA+FA module 75.40 68.85 79.87

3.3. Experimental Results

Experimental results of our experiments and comparison to
the state-of-the-art approaches are shown in Tab. 2.

From Tab. 2, we can see that our method exceeds most
methods using handcraft features or high-level learned fea-
tures. Specifically, AMAN yields comparable accuracy on
the CASME II but gets further improvement on the other two
datasets compared with GEME [19]. On the SAMM, our ac-
curacy is much higher than TSCNN-I [17] by 5.32%. On the
SMIC-HS, compared to TSCNN-I, our method improves the
accuracy by 7.13%. AMAN achieves further improvements
compared to those approaches using single-magnification
techniques [2, 3] to magnify MEs, indicating that our method
can automatically find the appropriate degree of magnifica-
tion levels.

4. CONCLUSION

Our paper presents a novel attention-based network that
can be adaptive to different magnification levels for Micro-
Expression recognition (MER). The network consists of two
modules: magnification attention module (MA module) for
weighting magnification levels and frame attention module
(FA module) for weighting aggregated frames in a Micro-
Expression video. Extensive experimental results prove that
our method yield superior performance compared to other
state-of-the-art methods.
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